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Abstract

A variational method is developed for analyzing the matrix creep induced time-dependent change in fiber stress
profiles in unidirectional composites. A functional of admissible profiles of fiber stress rate is presented by supposing a
fiber broken in matrix as well as a fiber pulled out from matrix. The functional is shown to have the stationary function
satisfying an incremental differential equation based on the shear lag assumption. Then, the stationary function is
approximately determined by assuming bilinear profiles of fiber stress and a power law of matrix creep, leading to
analytical solutions for the time-dependent change in fiber stress profiles. The solutions are verified on the basis of an
energy balance equation and a finite difference computation. Moreover, it is shown that the solution for the fiber pull-
out model agrees well with an experiment on a single carbon fiber/acrylic model composite if the initial slip at fiber/
matrix interface is taken into account. In addition, the solution for the fiber breakage model is used for evaluating the
characteristic time in long-term creep rupture of unidirectional composite. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Unidirectional composites reinforced with long brittle fibers may suffer from fiber breaks. In the broken
fibers, fiber stress is zero at the breaks but recovers the stress in intact fibers as axial distance increases from
each break. The distance for such a transient change in fiber stress is called the stress recovery, or transfer,
length and is important for evaluating the longitudinal tensile strength of composites.

Matrix creep may occur in metal matrix and polymer matrix composites. Then, the profiles of fiber stress
in broken fibers change with time, even if stress applied to composites is constant. This time-dependent
change causes the stress transfer length to increase with time, so that the carrying load of broken fibers
reduces; then, since the carrying load of intact fibers increases, further fiber breaks may occur to induce
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eventually the creep rupture of composites (Lifshitz and Rotem, 1970; Phoenix et al., 1988; Otani et al.,
1991; Ohno et al., 1994a,b).

Hence, the effect of matrix creep on the stress profiles in broken fibers is a fundamental subject, but
analytical solutions have been obtained only in a few cases: Lifshitz and Rotem (1970) derived approxi-
mately a linear viscoelastic solution for an axisymmetric cell containing a broken fiber by utilizing the
Laplace transformation. Mason et al. (1992) succeeded in obtaining an exact solution for a 2D plate model
by assuming the power-law creep of matrix, although they ignored the elastic strain of matrix. For an
axisymmetric model with nonlinear matrix creep, Iyengar and Curtin (1997) evaluated approximately but
analytically the time-dependent extension of the stress transfer length on the basis of the numerical study of
Du and McMeeking (1995). However, their analytical evaluation was restricted to only three integers of the
stress exponent of matrix creep, as they did not ignore the elastic strain of matrix. Thus it is worthwhile to
attain more generally applicable, analytical solutions, in which both the elastic and nonlinear creep strains
of matrix are taken into account.

The solutions mentioned above were obtained by solving differential equations based on the shear lag
assumption. It is, however, possible to utilize a variational method if a functional is known for the problem
considered. Variational methods are effective especially if the forms of solutions can be assumed appro-
priately. The methods enable us to obtain approximate solutions most accurately within the assumed forms
of solutions, since the unknown coefficients in assumed solutions are determined rationally by getting the
functionals stationary. For the elastic-creep problems of unidirectional fiber composites, however, varia-
tional methods have not been utilized yet.

The time-dependent change in fiber stress profiles can occur in a fiber pulled out from matrix as almost
equally as in a fiber broken in matrix, because these two problems are governed by essentially the same
equations (see Mason et al., 1992). It is, however, much easier to perform constant-load pull-out tests on
single-fiber model composites for the purpose of utilizing laser Raman spectroscopy for observing the effect
of matrix creep on fiber stress profiles (Miyake et al., 2001). It is, therefore, worthy developing a variational
method and deriving analytical solutions of both the fiber breakage and fiber pull-out problems. For such
problems, it is in general necessary to take into account the radial variation of matrix shear stress (Clyne
and Withers, 1993); the radial variation is essential for analyzing single-fiber model composites (Li and
Grubb, 1994).

Ohno and Miyake (1999) considered an energy approach to discuss analytically the time-dependent
change in fiber stress profiles in broken fibers. This approach is based on the energy balance that the elastic
energy released from a broken fiber is dissipated due to matrix creep around the fiber break. Thus, they
obtained an approximate solution for the time-dependent extension of the stress transfer length, though the
elastic strain of matrix and the radial variation of matrix shear stress were ignored. Then, using the resulting
solution as well as Curtin’s (1991) model, they estimated analytically the long-term creep rupture time and
strain of unidirectional composites. Useful findings were thus attained such as the dependence of rupture
time on applied stress. Nevertheless, it is open to obtain analytical solutions of the fiber pull-out problem
with the effect of matrix creep. Moreover, it is of significance to discuss whether the energy-balance based
solution mentioned above is derivable from a variational method, the principle of which has been well
established.

In this work, the time-dependent increase of the stress transfer length will be analyzed analytically by
developing a variational method for fiber breakage and fiber pull-out axisymmetric models, in which both
the elastic and creep strains of matrix as well as the radial variation of matrix shear stress will be taken into
account. First, a functional based on incremental complementary energy will be demonstrated for the
axisymmetric models, and it will be shown that the functional has a stationary function, which satisfies a
shear lag differential equation. Second, by supposing bilinear profiles of fiber stress and the power-law creep
of matrix, approximate solutions will be derived for the time-dependent increase of the stress transfer
length, and it will be discussed whether the resulting solutions satisfy the energy balance considered by



N. Ohno et al. | International Journal of Solids and Structures 39 (2002) 159-174 161

Ohno and Miyake (1999). Third, the solution for the fiber pull-out model will be compared with a finite-
difference computation of the shear lag equation and with one of the laser Raman spectroscopic experi-
ments done by Miyake et al. (1998, 2001). Finally, the solution for the fiber breakage model will be
employed for evaluating the characteristic time in the long-term creep rupture of unidirectional composites
analyzed by Ohno and Miyake (1999).

2. Axisymmetric shear lag models

In the present work, we consider two kinds of axisymmetric models based on the shear lag assumption,
i.e., a fiber breakage model and a fiber pull-out model. To begin with, we describe the models briefly.

In the fiber breakage model, a broken fiber of a radius r¢ is embedded in matrix in a cell, which has an
outer radius R and an axial length 2¢ (Fig. 1). Let us denote radial and axial coordinates by r and z, re-
spectively. We suppose that the lateral surface of the cell contacts with intact fibers, and so that the cell is
subjected to uniform, axial strain &(¢) at the outer peripheral and at the axial ends (Lifshitz and Rotem,
1970; Du and McMeeking, 1995; Iyenger and Curtin, 1997; Ohno and Miyake, 1999):

Ou
= =) atr=g, (1)
Ou
==l atz==L, )

where ¢ indicates time, and u denotes axial displacement.

Employing the shear lag assumption (Cox, 1952), we regard the fiber as a 1D bar and consider only the
shear deformation in matrix to be responsible for the distribution of fiber stress. Then, if Hooke’s law is
assumed for the broken fiber, we have

auf of
—r_Zr 3
0z E‘f7 ( )
where u; and oy signify the axial displacement and axial stress in fibers, respectively, and E; indicates
Young’s modulus of fibers. The fiber stress o¢ is related with the shear stress acting on the fiber/matrix

interface, t;, as

re 6af

T = 2 o2 . (4)

If the matrix exhibits creep in addition to elastic deformation, the shear strain rate in matrix, y,,, has an
expression
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Fig. 1. Axisymmetric cell consisting of broken fiber and elastic-creeping matrix subjected to overall strain &(¢).
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where 7,, and }¢, represent the shear stress and shear creep rate in matrix, respectively, and G,, denotes the
elastic shear rigidity of matrix. The superposed dot stands for the differentiation with respect to time ¢. In
the model, 7, may satisfy accurately j,, = 0uz/0r, so that using the above equation we can have

R(z
e — i = / g, ) d, (6)

where up denotes u at r = R.

In the present work, since the difference between R and ¢ cannot be small, we take into account the
radial variation of 7,, in matrix by assuming the following self-equilibrium equation of t,, in matrix (Clyne
and Withers, 1993; Li and Grubb, 1994):

rt, = rrt. (7)

Then, Eq. (6) becomes

+ 75 (5)
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Differentiating the above equation with respect to z, and using Eqgs. (1), (3) and (4), we obtain

2 2 . . R “C
ry RO or or Gy .
&9 m _
2Gm n re aZZ Ef /rf aZ dr + 8(t) 07 (9)

which is a differential equation for d¢(z, ¢) subjected to boundary conditions
a¢(0,1) =0, (10)
ap(L, 1) = Ere(t). (11)

It is obvious that Eq. (9) is applicable to the fiber pull-out model shown in Fig. 2. For this model, we
assume that the hatched part in the figure has no strain, so that in Eq. (9)

&(t) = 0. (12)
Moreover, the boundary conditions are
Uf(ovt) :p(t)a (13)
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Fig. 2. Axisymmetric model for pull-out of fiber embedded in elastic-creeping matrix.
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Gf(f, l) =0, (14)

where p(¢) indicates the pull-out force per unit area of the fiber.
If only elastic deformation takes place in the matrix at # = 0, the following shear lag equation is ap-
plicable to the initial states in the two models mentioned above:
2 2
Iy R d°c; oy
2 In= e = 1
26, "n a2 g T (15)

where ¢ = ¢(0), and g = 0 for the fiber pull-out model.

3. Functional and stationary function

For the two kinds of axisymmetric models described in the preceding section, it has been assumed that
fibers are regarded as 1D bars deforming uniaxially, and that only the shear deformation in matrix has
influence on the axial distribution of fiber stress. In accordance with this shear lag assumption, now let us
consider an incremental complementary energy function

14 d_2 V4 R _&2 l
U= Tcr?/ ff dz + 211/ / 2(’;” + 1,7, |rdrdz — 21rR/ Tpézdz, (16)
0 2bf o Jr m 0

where 7 stands for t,, at » = R. In the right-hand side of the above equation, the first term represents the
incremental elastic energy in the fiber embedded in matrix, the second term the incremental elastic energy
and energy dissipation induced by the shear stress in matrix, and the third term the variation in incremental
complementary energy due to the uniform, axial strain rate &(¢) at » = R. It is emphasized that the second
term deals with only the shear in matrix in conformity with the shear lag assumption.

Using Egs. (4) and (7), we obtain

2
17 Oo¢(z,1)
2r 0z (17)

Substitution of the above equation into Eq. (16) allows the incremental complementary energy U to become
a functional of 6¢(z, 7):

Tn(r,z,t) =

‘
Ulot(z,1)] = nr?/ F(z, 6y, 61)dz, (18)
0
where o = 0o /0z, and
) 2 R
0% It R .2 ./ .c L.
=_t In=¢?—¢" [ iz, 1
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The boundary conditions for 6¢(z,¢) in Eq. (18) are
o1(0,1) = p(1), (20)
ar(£, 1) = Eré(r). (21)

Here it is noted that p(¢) = 0 in the fiber breakage model, and that &(¢) = 0 in the fiber pull-out model.
The stationary function of the above functional U satisfies Euler’s equation

oF d [ oF
6y dz (aa;) =0 22
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Substitution of Eq. (19) into Eq. (22) yields

2 2. . R “C
o R%6 o [T 07,

G, "no? E ) @

T

dr +&(f) = 0. (23)

This is just Eq. (9), i.e., the shear lag differential equation given in the preceding section. Therefore, Eq. (9)
can be solved equivalently by finding the stationary function of the functional U given by Egs. (18) and
(19).

If only elastic deformation takes place in the matrix at £ = 0, we can consider a complementary energy
function

¢
—nrz/ f dz+27c/ / 2 rdrdz — 2TcR/ Trepzdz. (24)
0

Substitution of Eq. (17) into the above equation gives a functional

¢
Ulog(z,1)] = nr%/ F(z, 07, 0¢)dz, (25)
0
where
a2 2 R
= Téf + 4Gm In— p o + aleoz. (26)

Then, we can derive Eq. (15) by substituting Eq. (26) into the following Euler’s equation relevant to Eq.
(25):

oOF d [OF
aofdz<ao—f> 0. (27)

4. Analytical solutions based on bilinear profiles of fiber stress

Fig. 3(a) and (b) schematically illustrate the profiles of fiber stress in the fiber breakage and fiber pull-out
models, respectively. It may be simplest to approximate bilinearly the profiles, as indicated by the dashed
lines in the figures. In the present section, adopting such a bilinear approximation, we will derive analytical
solutions on the basis of the functional U demonstrated in the preceding section. Then, it will be examined
whether the resulting solutions satisfy energy balance within the shear lag assumption.

Lo . Bilinear approx. 7 S Bilinear approx.

EfE = p

(@ (b)

Fig. 3. Schematic illustration of fiber stress profile; (a) fiber breakage model and (b) fiber pull-out model.
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4.1. Fiber pull-out model

Here we consider the fiber pull-out model first, since it is simpler. Let us suppose that the force applied to
the fiber is constant (i.e., p(¢) = pp), and let us approximate bilinearly o¢(z, ¢) in the fiber pull-out model as

[ pll —z/a(t)], 0<z<a,
or(z,t) = {O, a<z<l, (28)
where a(t) denotes a stress transfer length (Fig. 3(b)). Then, 6¢(z,¢) has an expression
. [ poza(t))a*, 0<z<a,
6t(z, 1) = { ’ a<o<t, (29)

Substituting Eq. (29) into the functional U given by Egs. (18) and (19), we obtain

Cmrp | L] RY a c
v= a l (6Ef 4Gma rf) / / drdz] (30)

As was represented in Eq. (18), formulation of the present variational method is incremental. Accordingly,
the above functional U should be taken to be stationary with respect to a by supposing that the current
value of a is known. Thus, using

ou
%

we obtain

<3Ef G " )a"//“/mdrdz 0. (32)

In the fiber pull-out model, 7, is the dominant stress in matrix. Thus, if we assume for simplicity
Norton’s law for ¢, we can have

=0, (31)

T = Beltal" 1, (33)
where B, and n are material constants. Substitution of Egs. (17) and (28) into Eq. (33) gives
ripo\"
© =B 2= ) . 34
i = 12) (34)
Then, since Eq. (32) results in
n 2 n—2 2n o n—1 R
a ria R\. B.ui"p; dr
In— —_— — 35
e (33)
we obtain an analytical solution
a(t)’ — a0y 2 R a(t) ,. R
———— 4+ —"In—In—= =By In— =1
3E, +Gm nrf na(()) r; nrft, n=1, (36a)
¢ n+l 0 n+l1 1’21 R ¢ n=1 0 n—1 BTI’J1+1 5n—1 1
Cl() a( ) + f Il( /rf)[a() a( ) ]: t Po 1_(ﬁ> t, I’l;’él (36b)
3(n+ 1)E; 2(n—1)Gy 21(n—1) R

The initial value @(0) in the above solution can be evaluated using the elastic functional (25) as follows:
Substitution of Eq. (28) and & = 0 into Eq. (25) with Eq. (26) provides
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a r? R
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Then, using

dU

=0 38

da ’ (38)
we obtain

1/2
a0) = (3w k) (39)

4.2. Fiber breakage model

An analytical solution for the fiber breakage model can be derived in almost the same way, if overall
strain &(¢) is constant (i.e., &(f) = &). For this model, o¢(z,¢) can be approximated bilinearly as

[ Ereoz/a(t), 0<z<a,
oulz) = { gl 0z <e (40)

Then, Eqgs. (18) and (19) give

1 2 R a (¢ [k
Ereod® | — +—1—In— - 7€ drdz|. 41
f€od <6Ef+4Gm112 nrf> +a/0 /rf Vo A7 z] (41)

Hence, using Eq. (31), we obtain

2
U— TU”fE(S()

2
rt

1 R 1 e R
Eroo| — +—0 10> a4 ° drdz — 0. )
feo(3Ef+2Gma2 “rf>“+a/0 /rfymdrdz 0 (42)

In the fiber breakage model, the axial normal stress in matrix is as dominant as matrix shear stress 7,, in the
initial state, in contrast to the fiber pull-out model. The axial normal stress in matrix, however, tends to
relax much more quickly than 7,, as matrix creep proceeds (Du and McMeeking, 1995; Ohno and Miyake,
1999). Thus, we may assume Eq. (33) to express 7¢. Eq. (42) then can be integrated analytically as

a(t)’ —a(0)> 2 R, a() ,, R
Al a0 1 B et o, 43
38 Gy m Ma(e) DTTimh o (43a)

a(t)"“ . a(O)"H +r§ ln(R/rf)[a(t)”fl _ a(O)”fl] B Brrl’JJrl(Erso)nfl {1 B <rf>n1:| LAl (43b)

3(n+ 1)E; 2(n - 1)G,, T 2(n—1) R

For the fiber breakage model, Eq. (25) with Eq. (26) is reduced to

2 Ry
U= (B [ 2+ B+ 2. 44
i (Eiéo) <6Ef+4Gma TR (44)

Hence, applying Eq. (38) to the above equation, we obtain again Eq. (39), which gives the initial value a(0)
in the solutions (43a) and (43b).
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4.3. Energy balance

For the fiber pull-out model dealt with in Section 4.1, the external work done by pull-out force p, should
be equal to the change rate of internal energy with respect to time:

Ttr%pﬂ:i(nr? | Z—Efdz—&—ZTt/ / rdrdz) —|—2n/ / Ty rdrdz, (45)

where /4 indicates the pull-out displacement at z = 0, so that

PR (46)
= 5
Here it is noticed again that only shear is considered for the matrix in conformity with the shear lag as-
sumption. Use of Egs. (17) and (46) allows Eq. (45) to become

¢
GfO“f rfafaf _ “c
po/ / dz + / /r Gy drdz /0 /r opye drdz. (47)

Then, it can be shown that substitution of the fiber stress profile (28) into Eq. (47) results in Eq. (32), which
has led to the solutions (36a) and (36b). This means that the energy balance condition (44) and the bilinear
fiber stress profile (28) also yield the solutions (36a) and (36b), and that the solutions (36a) and (36b) satisfy
the energy balance condition (45).

For the fiber breakage model considered in Section 4.2, the elastic tensile energy in the fiber, the elastic
shear energy in the matrix and the energy dissipation due to shear creep in the matrix are in equilibrium in
the cell, because the lateral and end surfaces of the cell are subjected to fixed displacement &yz. This energy
balance is represented as Eq. (45) or Eq. (47) with py = 0. Then, in the same way as in the fiber pull-out
model, it can be shown that the solutions (43a) and (43b) satisfy the energy balance condition in the cell,
and that the energy-balance based solution for the fiber breakage model in the previous work (Ohno and
Miyake, 1999) is derivable from the variational method developed in the present work. In the previous
work, however, the elastic strain in matrix and the radial variation of matrix shear stress were ignored.
Hence, the solutions (43a) and (43b) are identical to the previous one, if the effect of the elastic strain in
matrix is negligible and if the volume fraction of fibers is sufficiently high.

5. Discussion

We have derived the analytical solutions (36a), (36b), (43a) and (43b) by approximating bilinearly the
profiles of fiber stress. It is seen that the solutions (36a) and (36b) with p, replaced by Ere, is identical to
Egs. (43a) and (43b). In this section, to discuss the validity of the solutions, we compare Egs. (36a) and
(36b) with a finite difference computation and an experiment based on Raman spectroscopy.

5.1. Comparison of present solution and computation

Fig. 4(a) and (b) compare the solutions (36a) and (36b) with a finite difference computation of Egs. (9)
and (15). The computation has been done in the same way as in the work of Du and McMeeking (1995) by
employing nondimensional quantities

r zZ ~ g
F=—, z2=2=, i=B.Ep't, & =—. (48)
re re p()
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Fig. 4. Time-dependent profiles of fiber stress by analytical solution and finite difference computation (G, /E; = 0.01, R/r; =5,
£/rs =200); (@) n=1 and (b) n = 3.

Fig. 4(a) and (b) deal with linear and nonlinear cases of matrix creep, respectively; the material pa-
rameters employed are given in the figure caption. It is seen from the figures that, within the bilinear ap-
proximation of fiber stress profiles, the solutions (36a) and (36b) agree well with the computation in the two
cases. Especially the solution (36b), which is for n > 1, works better, as seen in Fig. 4(b). This is because the
nonlinearity of matrix shear creep gets fiber stress to distribute more bilinearly, as was found by Du and
McMeeking (1995).

5.2. Effect of elastic shear deformation of matrix

Before moving on to the comparison with an experiment, we discuss the effect of the elastic shear de-
formation of matrix, which has been taken into account in the present work.

When G,, = co, we have a(0) =0 from Eq. (39), and consequently the solutions (36a) and (36b) are
reduced to

R\ 2
a(t) =rr <3BTEf lnr—t) . on=1, s
f
_ 3(n+ 1)B.Epp! Fey -1 1/(n+1)
a(f)—”'f{zn(n_l) 1—(5) t L on#l 490

Hence, when G,, = oo, the stress transfer length a develops from zero in proportion to /1), This was the
finding in the exact solution of Mason et al. (1992), who ignored the elastic shear strain in matrix in deriving
their solution.

Fig. 5(a) and (b) illustrate the effect of the elastic shear strain of matrix on the time-dependent increase of
a in the two cases of n = 1 and 3, respectively. As seen from the figures, a(¢) is larger just after loading if
G,./Er is smaller. The dependence of a(¢) on G, /Er, however, fades with time, as was found numerically by
Lagoudas et al. (1989). It is noticed that the solutions with G,, = co, Egs. (49a) and (49b), become valid if
these solutions get providing such a as comparable with a(0) given by Eq. (39). Hence, we can say that the
effect of the elastic shear strain of matrix cannot be ignored until matrix shear creep develops to be
comparable with the initial elastic shear strain in matrix.
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Fig. 5. Influence of matrix shear rigidity on time-dependent increase of stress transfer length; (a) n =1, R/ry =5 and (b) n =3,
R/Vf =5.

5.3. Comparison of present solution and experiment

Now let us apply the present solution to one of the fiber pull-out experiments done by Miyake et al.
(2001). In the experiment, a single carbon fiber/acrylic model composite was employed, and one end of the
carbon fiber was subjected to a constant stress of py = 2.7 GPa for 500 h. Fig. 6 shows the fiber stress
profiles measured using laser Raman spectroscopy in the experiment.

A notice is necessary for applying the present solution to the experiment mentioned above. It was
concluded that the sliding at fiber/matrix interface occurred under the loading to py = 2.7 GPa, since the
maximum value of interfacial shear stress determined from the fiber stress profiles in Fig. 6 was only about
one tenth of the theoretical estimation based on the perfect bonding at interface (Miyake et al., 2001). The
sliding has not been taken into account in the preceding sections. Nevertheless, the functional (18) and the
resulting solutions (36a) and (36b) remain valid, if the sliding took place only initially in the experiment, and
if the initial value of « is taken to be equal to a slip length a, i.e.,

a(0) = as. (50)
Using Eq. (4), a; can be expressed in terms of interfacial slip stress 7, as
r'tpo
(== 51
as =5 (51)
3.0
5
<) 2.0
b‘\
S 10
2
=~
0.0

|
0 1000 2000 3000
Axial position z (um)

Fig. 6. Time-dependent change of fiber stress profile in single carbon fiber/acrylic model composite (Miyake et al., 2000).
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Fig. 7. Comparison of experiment and analytical solution based on creep constants determined by steady-state fitting of creep curves.

Fig. 7 compares the experiment and the solution (36b) with respect to a(¢). It is seen that the solution
(36b) with the initial slip mentioned above agrees well with the experimental relation indicated by solid
circles, which were determined by approximating bilinearly the fiber stress profiles in Fig. 6. The material
constants used for the solution are given in Table 1. The value of R/r; in the table was shown to be ap-
propriate for a fiber embedded in infinite matrix by Li and Grubb (1994), and the creep constants were
determined by fitting creep curves of the acrylic employed (Appendix A). Incidentally, R/r¢ is ascertained to
have negligible influence in Eq. (36b) on simulating the experiment, since R/r; does not appear in a(0) given
by Egs. (50) and (51).

The dashed line in Fig. 7 illustrates the prediction based on the perfect bonding at interface, i.e., the
solution (36b) with a(0) prescribed as Eq. (39). It is seen that this prediction fails to agree with the ex-
periment up to ¢ =~ 10 h. We are thus led to confirm that the assumption of the perfect bonding at interface
is not appropriate for simulating the experiment.

The solution (36b) is based on Norton’s law expressed as Eq. (33). As a consequence, the transient creep
behavior of the matrix material is disregarded in the predictions shown in Fig. 7. Now, just for discussing
the effect of such creep behavior, let us assume simply the time-hardening of matrix shear creep

a'yc -1 t k
" =B mn my =t — ) 52
T — Brfeal (1) (52)

where B?, n, t) and k are material constants (see Table 1 and Appendix A). Then, we have the solution (36b)
with ¢ and B, replaced by ¢* and B?, respectively. This solution gives the predictions shown in Fig. 8. It is
seen that the predictions in this figure are a little better than those in Fig. 7. It is, however, not necessary to
change the conclusions, which we have obtained by discussing the results in Fig. 7.

Table 1
Material constants
Elastic constants etc., E; =490 GPa, G,, = 570 MPa, ry =2.7 pm, R/ry =4
Matrix creep constants
No hardening B.=125x10% MPa™h™', n=35
Time-hardening B =125x 104 MPa"h™', n=3.5,1 =50 h, k = 0.65

Interfacial slip stress 17, = 4.9 MPa
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Fig. 8. Comparison of experiment and analytical solution with time-hardening of matrix creep.

6. Long-term creep rupture of unidirectional composites

Ohno and Miyake (1999) analyzed the long-term creep rupture of a unidirectional composite, with a
fiber volume fraction V%, subject to constant stress o; they assumed the bilinear distribution of fiber stress
and employed Curtin’s (1991) model. In this section, the solutions (43a) and (43b) are applied to evaluating
the characteristic time in their analysis.

Let us outline the analysis of Ohno and Miyake (1999). It was supposed that the fibers are brittle and
have the scatter of tensile strength obeying the Weibull distribution with three parameters Ly, Sy and m, and
that interfacial sliding stress 7, is low. It was assumed that the longitudinal normal stress in matrix, o,,, is
completely relaxed during long-term creep, i.e., g,, = 0, giving rise to initial overall strain &¢* = o/(V;Ef)
except for the effect of fiber breaks (Du and McMeeking, 1995). It was also assumed that all fiber breaks
have the same amount of relaxation of interfacial shear stress 7; as that around an initial break (Iyengar and
Curtin, 1997). Then, Curtin’s (1991) model led to

g 1, [Ee() ]!
Vf = EfS(t){l — 2|’[i(l)| [ Sc :| }, (53)

where S, = (LoSy'ts/ rf)l/ +) Moreover, by noticing that the difference of rupture strain ¢, from &” is likely
to be small in long-term creep, |7;(¢)| in Eq. (53) was replaced with that under the relaxation at constant
overall strain £. Thus, by considering the energy balance around an initial fiber break at constant overall
strain ¢* and by ignoring the elastic strain in matrix as well as the radial variation of shear stress in matrix,
|7i(#)| in Eq. (53) was set to be

¢t 1-1/nt1)
t_# )

@) =1s|1 +(n+1) (54)

where ¢ is a characteristic time. Then, by substituting Eq. (54) into Eq. (53), the strain and time at rupture
were eventually obtained as follows:

L (55)
t# Vmeax (m+1)(n+1)

t, = — 1], 56

n+1 < o > (56)
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where Sy, represents the load carrying capacity of fibers in composites under tensile loading (Curtin, 1991):

m 1 2 1/(m+1)
Smax =S ——= | ——= . 57
* cm—&—2<m—|—2) (57)

Now we show that the solutions (43a) and (43b) allow |z;(¢)| in Eq. (53) to be expressed as Eq. (54) as far
as long-term creep is concerned. Let us suppose that the cell in the fiber breakage model is subject to
constant overall strain ¢#, and that the profile of fiber stress is bilinearly approximated. Then, Egs. (4) and
(40) with gy = &* give

. rfEfS#
0] = gy (58)
Since ¢* = o/(V;E;), the above equation is rewritten as
a(0)
i = 1s 5 59
0] = g0 (59)
where a(0) is equal to the interfacial slip length caused by 7, under g,, =0, i.e.,
reag
0) = ) 60
a(0) =5 7 (60)

Since the effect of elastic shear strain in matrix fades with time (Section 5.2), Egs. (43a), (43b), (59) and (60)
provide Eq. (54) with

2

# o
= =1 61
LT SEB IR T (61a)
# (n—1)a*
‘ n# 1. (61b)

 GEB. T2 1= Gu/Ry ]

Here, B, = 3""*V/2B_ if based on the Mises equivalence of tension and torsion (see Appendix A), and R/r; =
2(Vpmax/ 11)/? — 1 for the hexagonal array of fibers, where ymax (= 1/24/3) indicates the maximum value
of 1}.

Ohno and Miyake (1999) determined ## from the solution of t; based on the energy balance in the cell,
though they ignored the radial variation of matrix shear stress and the elastic shear strain in matrix. Let us
remember that the present solutions (43a) and (43b) also satisfy the energy balance in the cell (Section 4.3),
and that the effect of elastic shear strain in matrix has been neglected in deriving Egs. (61a) and (61b).
Therefore, except for the effect of the radial variation of matrix shear stress, /* in the present work agrees
with the previous one. In other words, as }/; approaches V™, the two results become identical with each
other; but if V; <« V™, the present result can be better than the previous one.

7. Conclusions

The present work dealt with a variational method to analyze the time-dependent change in fiber stress
profiles in unidirectional fibrous composites; two kinds of axisymmetric models, i.e., fiber breakage and
fiber pull-out models, were considered. A functional based on incremental complementary energy was
demonstrated and proved to have the stationary function satisfying a differential equation based on the
shear lag assumption. Then, analytical solutions were derived by assuming bilinear profiles of fiber stress
and by getting the functional stationary; a power law of matrix shear creep was employed to derive the
analytical solutions. It was shown that the resulting solutions satisfy an energy balance condition and agree
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well with a finite-difference computation of the differential equation. It was thus found that the energy-
balance based solution obtained by Ohno and Miyake (1999) is derivable from the variational method
developed in the present work, and that the elastic deformation of matrix has significant influence on the
time-dependent increase of the stress transfer length until time elapses sufficiently long. It was also shown
that the solution for the fiber pull-out model simulates well the experiment on a carbon fiber/acrylic model
composite if the initial slip at fiber/matrix interface is taken into account. In addition, the solution for the
fiber breakage model was used for evaluating the characteristic time in long-term creep rupture of uni-
directional composite.

The present work has the following merits in comparison to the previous work (Ohno and Miyake,
1999). First, a variational method based on incremental complementary energy was developed in the
present work. Such a variational method is based on the well-established principle and therefore can be
effective even when assumed solutions have multiple unknowns; the Rayleigh—Ritz method can be used to
determine the multiple unknowns from the stationary condition. This is in contrast to the energy approach
considered in the previous work, which provides just one equation and consequently allows only one
unknown to be determined. The variational method developed in the present work thus can be more
general and opens the way to considering other problems such as multifiber systems containing single or
multiple fiber breaks. Second, both the fiber pull-out and fiber breakage models were studied in the present
work, while only the fiber breakage model in the previous work. The fiber pull-out model is important
especially for the purpose of utilizing laser Raman spectroscopy for observing the effect of matrix creep on
fiber stress profiles. Third, the radial variation of matrix shear stress as well as the elastic strain in matrix
was taken into account in the present work, so that the present solution can be valid for single-fiber model
composites or composites with low volume fractions of fibers.
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Appendix A

Fig. 9 shows tensile creep curves of the acrylic employed by Miyake et al. (2001). The dashed lines in the
figure indicate the simulation based on

8

Strain (%)
N

|
0 20 40 60 80 100
Time (h)

Fig. 9. Tensile creep curves of acrylic at constant stresses; dashed and solid lines fitted with Eqgs. (A.1) and (A.2), respectively.
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6= Ei—l—Baa”t, (A1)

m

where B, = 5.53 x 10~® (MPa™" h’l) and n = 3.5. The solid lines, on the other hand, are based on

g
E m

k
t
e=—+Bo"t", = t0< > , (A.2)

t

where B = 5.53 x 107% (MPa™" h™"), n=3.5, 1, = 50 (h) and k = 0.65.

The equivalence between tension and torsion ascertained for inelastic deformation of metals tends to
hold for polymers as well (Kitagawa et al., 1992; Qiu and Kitagawa, 1993). Hence, if we assume simply the
Tresca equivalence, B, in Eq. (33) and B? in Eq. (52) satisfy B, = 2"*'B, and B: = 2""!B?, respectively, so
that we have the creep constants given in Table 1.
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